The Christoffel function for the Hermite weight is bell-shaped ${ }^{2 / 3}$

Geno Nikolov
Department of Mathematics, University of Sofia, 5 James Bourchier Blvd., Sofia 1164, Bulgaria

Received 22 April 2002; accepted in revised form 3 November 2003
Communicated by Mourad Ismail

Abstract

We show that the Christoffel function λ_{n} associated with the Hermite weight function $w_{H}(x)=\exp \left(-x^{2}\right)$ is bell-shaped. As a consequence, we describe completely how the weights in a Gauss-type quadrature formula associated with $w_{H}(x)$ are arranged in magnitude. (C) 2003 Elsevier Inc. All rights reserved.

MSC: primary 41A55, 65D30
Keywords: Gauss-type quadrature formulae; Christoffel function

1. The result

Let $d \alpha$ be a finite positive Borel measure on the real line, such that all its moments are finite, i.e.,

$$
\mu_{n}=\int_{\mathbb{R}} x^{n} d \alpha(x)<\infty, \quad n=0,1,2, \ldots, \quad\left(\mu_{0}>0\right)
$$

Denote by $\left\{p_{n}\right\}_{n=0}^{\infty}$ the associated sequence of polynomials orthonormal with respect to $d \alpha$ on \mathbb{R}, i.e., polynomials

$$
p_{n}(x)=p_{n}(d \alpha ; x)=\gamma_{n} x^{n}+\ldots, \quad \gamma_{n}=\gamma_{n}(d \alpha)>0,
$$

[^0]satisfying
$$
\int_{\mathbb{R}} p_{m}(x) p_{n}(x) d \alpha(x)=\delta_{m n}, \quad m, n=0,1,2, \ldots
$$

The Christoffel function associated with $d \alpha$ is defined by

$$
\lambda_{n}(d \alpha ; x):=\left[\sum_{k=0}^{n-1} p_{k}(d \alpha ; x)^{2}\right]^{-1}, \quad n=1,2, \ldots
$$

or, equivalently, by

$$
\lambda_{n}(d \alpha ; x)=\frac{\gamma_{n}}{\gamma_{n-1}} \frac{1}{p_{n}^{\prime}(d \alpha ; x) p_{n-1}(d \alpha ; x)-p_{n}(d \alpha ; x) p_{n-1}^{\prime}(d \alpha ; x)}
$$

For a detailed account on Christoffel functions and their application to various problems arising in orthogonal polynomials, approximation theory, harmonic and numerical analysis, we refer the reader to the survey of Nevai [6].

This note is concerned with the behavior of $\lambda_{n}(x)$ in the case of Hermite weight function $w_{H}(x)=\exp \left(-x^{2}\right)$, i.e., $d \alpha(x)=w_{H}(x) d x$. As is well-known (see, e.g., [8]), in this case the associated orthogonal polynomials are the Hermite polynomials $\left\{H_{n}\right\}$ given by

$$
H_{k}(x)=(-1)^{k} e^{x^{2}} \frac{d^{k}}{d x^{k}}\left\{e^{-x^{2}}\right\}, \quad k=0,1, \ldots
$$

and the Christoffel function $\lambda_{n}(x)=\lambda_{n}\left(w_{H} ; x\right)$ is

$$
\begin{equation*}
\lambda_{n}\left(w_{H} ; x\right)=\frac{\pi^{1 / 2} 2^{n}(n-1)!}{H_{n}^{\prime}(x) H_{n-1}(x)-H_{n}(x) H_{n-1}^{\prime}(x)} \tag{1.1}
\end{equation*}
$$

It turns out that the graph of $\lambda_{n}\left(w_{H} ; x\right)$ is extremely simple, a fact that seems not to have been noticed before.

Theorem 1. The Christoffel function $\lambda_{n}\left(w_{H} ; x\right)$ is bell-shaped.
Proof. All we need is to show that $\lambda_{n}^{\prime}\left(w_{H} ; x\right)$ changes its sign only at $x=0$. The proof makes use of the following "individual" properties of the Hermite polynomials (cf. [8, Chapter 5.5])

$$
\begin{equation*}
H_{k}^{\prime}(x)=2 k H_{k-1}(x) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{k}^{\prime \prime}(x)=2 x H_{k}^{\prime}(x)-2 k H_{k}(x) \tag{1.3}
\end{equation*}
$$

Clearly, $\lambda_{n}^{\prime}\left(w_{H} ; x\right)=0$ if and only if $H_{n}^{\prime \prime}(x) H_{n-1}(x)-H_{n}(x) H_{n-1}^{\prime \prime}(x)=0$. With the help of (1.2) and (1.3) we find

$$
H_{n}^{\prime \prime} H_{n-1}-H_{n} H_{n-1}^{\prime \prime}=-\frac{H_{n}^{2}}{2 n}\left(\frac{H_{n}^{\prime \prime}}{H_{n}}\right)^{\prime}
$$

$$
\left(\frac{H_{n}^{\prime \prime}}{H_{n}}\right)^{\prime}=\left(2 x \frac{H_{n}^{\prime}}{H_{n}}-2 n\right)^{\prime}=2\left[\frac{H_{n}^{\prime}}{H_{n}}+x\left(\frac{H_{n}^{\prime}}{H_{n}}\right)^{\prime}\right]
$$

hence

$$
H_{n}^{\prime \prime} H_{n-1}-H_{n} H_{n-1}^{\prime \prime}=-\frac{H_{n}^{2}}{n}\left[\frac{H_{n}^{\prime}}{H_{n}}+x\left(\frac{H_{n}^{\prime}}{H_{n}}\right)^{\prime}\right]
$$

With $x_{1, n}<\cdots<x_{n, n}$ being the zeros of H_{n} (by symmetry, $x_{n+1-i, n}=-x_{i, n}$ for $i=1, \ldots, n$), we obtain

$$
\begin{aligned}
\frac{H_{n}^{\prime}}{H_{n}}+x\left(\frac{H_{n}^{\prime}}{H_{n}}\right)^{\prime} & =\sum_{i=1}^{n} \frac{1}{x-x_{i, n}}-\sum_{i=1}^{n} \frac{x}{\left(x-x_{i, n}\right)^{2}} \\
& =-\sum_{i=1}^{n} \frac{x_{i, n}}{\left(x-x_{i, n}\right)^{2}} \\
& =-\frac{1}{2} \sum_{i=1}^{n}\left[\frac{x_{i, n}}{\left(x-x_{i, n}\right)^{2}}-\frac{x_{i, n}}{\left(x+x_{i, n}\right)^{2}}\right] \\
& =-2 x \sum_{i=1}^{n} \frac{x_{i, n}^{2}}{\left(x^{2}-x_{i, n}^{2}\right)^{2}}
\end{aligned}
$$

Hence, we found

$$
H_{n}^{\prime \prime}(x) H_{n-1}(x)-H_{n}(x) H_{n-1}^{\prime \prime}(x)=\frac{2 x H_{n}^{2}(x)}{n} \sum_{i=1}^{n}\left(\frac{x_{i, n}}{x^{2}-x_{i, n}^{2}}\right)^{2}
$$

showing that $\lambda_{n}^{\prime}\left(w_{H} ; x\right)$ changes its sign only at $x=0$, and $x=0$ is a single or triple zero of $\lambda_{n}^{\prime}\left(w_{H} ; x\right)$ depending on whether n is even or odd number. Theorem 1 is proved.

2. Application to quadrature formulae

The Christoffel function $\lambda_{n}(d \alpha)$ is closely related to the weights $\lambda_{k, n}=$ $\lambda_{k, n}(d \alpha)(k=1, \ldots, n)$ of the n-point Gauss-Jacobi quadrature formula

$$
\begin{equation*}
Q_{n}^{\mathrm{G}}[f]=\sum_{k=1}^{n} \lambda_{k, n} f\left(x_{k, n}\right) \tag{2.1}
\end{equation*}
$$

which is determined uniquely by the property that it calculates exactly the integral

$$
I[f]=I[d \alpha ; f]:=\int_{\mathbb{R}} f(x) d \alpha(x)
$$

whenever f is algebraic polynomial of degree not exceeding $2 n-1$, and wherein $\left\{x_{k, n}\right\}_{k=1}^{n}=\left\{x_{k, n}(d \alpha)\right\}_{k=1}^{n}$ are the zeros of $p_{n}(d \alpha), x_{1, n}<x_{2, n}<\cdots<x_{n, n}$. Namely, the weights $\lambda_{k, n}$ in Q_{n}^{G} are given by

$$
\lambda_{k, n}(d \alpha)=\lambda_{n}\left(d \alpha ; x_{k, n}(d \alpha)\right), \quad k=1, \ldots, n
$$

This is a particular case of a more general property of the Christoffel function $\lambda_{n}(d \alpha)$, which we recall below.

Definition 2. A quadrature formula

$$
\begin{equation*}
Q_{n}[f]=\sum_{k=1}^{n} a_{k, n} f\left(t_{k, n}\right), \quad t_{1, n}<t_{2, n}<\cdots<t_{n, n} \tag{2.2}
\end{equation*}
$$

is said to be a Gauss-type quadrature formula associated with $d \alpha$, if $Q_{n}[f]=I[f]$ for every polynomial f of degree not exceeding $2 n-2$.

As is well-known, a necessary and sufficient condition for (2.2) to be of Gauss-type is (2.2) to be interpolatory with nodes generated by the zeros of a polynomial

$$
\begin{equation*}
\psi_{n}(\varrho ; x)=p_{n}(d \alpha ; x)-\varrho p_{n-1}(d \alpha ; x), \quad \varrho \in \mathbb{R} . \tag{2.3}
\end{equation*}
$$

For each $\varrho \in \mathbb{R}$ the zeros $\left\{t_{k, n}(\varrho)\right\}_{k=1}^{n}$ of ψ_{n} are real, distinct and $\left\{t_{k, n}(\varrho)\right\}$ are strictly monotone increasing functions. This follows easily from the zero separation property of orthogonal polynomials. As a consequence of this monotonicity, for $k=1, \ldots, n$ the k th node of a Gauss-type quadrature formula belongs to $\left(x_{k-1, n-1}(d \alpha), x_{k, n-1}(d \alpha)\right)$, where $x_{0, n-1}(d \alpha):=-\infty$ and $x_{n, n-1}(d \alpha):=\infty$. Another consequence is that the nodes of every two Gauss-type quadrature formulae interlace.

We shall use the following important property of the Christoffel function (see, e.g., [4, Chapter 1]):

Proposition 3. Given an arbitrary $\xi \in \mathbb{R}$ such that $p_{n-1}(d \alpha ; \xi) \neq 0$, there exists a unique Gauss-type quadrature formula (2.2) which has ξ as a node. The corresponding to ξ weight in this quadrature formula is equal to $\lambda_{n}(d \alpha ; \xi)$.

In view of Theorem 1, for the weights in the Gauss-type quadrature formulae associated with the Hermite weight function $w_{H}(x)=\exp \left(-x^{2}\right)$ we have the following comparison rule: the closer the node to the origin, the larger the corresponding weight. Winston [9] has proved this property for the weights of the Gauss-Jacobi quadrature formulae associated with $w_{H}(x)$, using an approach proposed by Sonin [7]. Since $\lambda_{k, n-1}=\lambda_{n-1}\left(x_{k, n-1}\right)=\lambda_{n}\left(x_{k, n-1}\right)$ for $k=1, \ldots, n-1$, we obtain Winston's result as a consequence of our comparison rule:

Corollary 4. The weights of the Gaussian quadrature formulae Q_{n}^{G} and Q_{n-1}^{G} associated with the Hermite weight function $w_{H}(x)=\exp \left(-x^{2}\right)$ satisfy

$$
\lambda_{1, n}<\lambda_{1, n-1}<\lambda_{2, n}<\lambda_{2, n-1} \cdots<\lambda_{[(m+1) / 2], m}
$$

where $m=n-1$ if n is even, and $m=n$ if n is odd.

For nonsymmetric Gauss-type quadrature formulae our comparison rule yields:
Corollary 5. Let (2.2) be a non-symmetric Gauss-type quadrature formula associated with the Hermite weight function $w_{H}(x)=\exp \left(-x^{2}\right)$.
(a) If for a $k \in\{1,2, \ldots,[n / 2]\} t_{n+1-k, n}>-t_{k, n}$, then

$$
a_{n, n}<a_{1, n}<a_{n-1, n}<a_{2, n}<a_{n-2, n}<\cdots .
$$

(b) If for a $k \in\{1,2, \ldots,[n / 2]\} \quad t_{n+1-k, n}<-t_{k, n}$, then

$$
a_{1, n}<a_{n, n}<a_{2, n}<a_{n-1, n}<a_{3, n}<\cdots .
$$

Proof. Actually, we prove a slightly stronger result. Consider case (a). Since the nodes of Q_{n} and Q_{n}^{G} interlace, the inequality $t_{n+1-k, n}>-t_{k, n}$ shows that the nodes of Q_{n} are biased to the right with respect to the nodes of Q_{n}^{G}. We make use of the symmetrical structure of Q_{n}^{G} and Q_{n-1}^{G}, the fact that the nodes of Q_{n} interlace with the nodes of both Q_{n}^{G} and Q_{n-1}^{G}, and the comparison rule to obtain the inequalities

$$
\begin{aligned}
& a_{n, n}<\lambda_{n, n}=\lambda_{1, n}<a_{1, n}<\lambda_{1, n-1}=\lambda_{n-1, n-1}<a_{n-1, n}<\lambda_{n-1, n}, \\
& \lambda_{n-1, n}=\lambda_{2, n}<a_{2, n}<\lambda_{2, n-1}=\lambda_{n-2, n-1}<a_{n-2, n}<\lambda_{n-2, n} .
\end{aligned}
$$

Proceeding in the same manner, we find the arrangement of all the weights of Q_{n}. The proof of part (b) is analogous, and therefore is omitted.

Many properties of the Christoffel function associated with the ultraspherical weight function $w_{\mu}(x)=\left(1-x^{2}\right)^{\mu-1 / 2}$, including various inequalities between the weights of the related Gauss, Radau and Lobatto quadrature formulae, have been obtained by Förster [2]. Unlike the situation with Theorem 1, the graph of the Christoffel function $\lambda_{n}\left(w_{\mu} ; x\right)$ is more complicated, e.g., for $-1 / 2<\mu \leqslant 1 / 2, \lambda_{n}\left(w_{\mu} ; x\right)$ has exactly $2 n-3$ local extrema (see [2]). Nevertheless, it is well-known (cf., e.g., [8, Chapter 15]) that the weights of the Gauss-Jacobi quadrature formula Q_{n}^{G} associated with $w_{\mu}(\mu>0)$ increase as their abscisae approach the origin, and have the opposite behavior when $\mu<0$. This fact has been used in [1] in the study of the weight distribution of spherical t-designs.

For other inequalities and estimates involving the weights in Gauss-type quadrature formulae associated with the classical weight functions of Jacobi, Laguerre and Hermite we refer the reader to [3,5,9]. Note that all these papers make use of the Sonin approach, which is not applicable if the associated orthogonal polynomials do not satisfy a second-order differential equation. We conjecture that the bell-shaped form in the Christoffel function persists for more general weight functions, e.g., for Freud weights of the form $w(x)=\exp \left(x^{-m}\right), m$ - even positive integer. However, for $m>2$ the proof must rely on different kind of arguments.

References

[1] E. Bannai, On the weight distribution of spherical t-designs, European J. Combin. 1 (1980) 19-26.
[2] K.-J. Förster, On the weights of positive quadrature formulae for ultraspherical weight functions, Ann. Numer. Math. 2 (1995) 35-78.
[3] K.-J. Förster, K. Petras, On estimates for the weights in Gaussian quadrature in the ultraspherical case, Math. Comp. 55 (1990) 243-264.
[4] G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
[5] H.N. Laden, Fundamental polynomials of Lagrange interpolation and coefficients of mechanical quadrature, Duke Math. J. 10 (1943) 145-151.
[6] P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986) 3-167.
[7] N. Sonin, On the determination of limiting values of definite integrals, Memoirs Russ. Acad. Sci. 69 (1892) 1-30.
[8] G. Szegö, Orthogonal Polynomials, 4th Edition, American Mathematical Society, Providence, RI, 1975.
[9] C. Winston, On mechanical quadrature formulae involving the classical orthogonal polynomials, Ann. Math. (3) 35 (1934) 658-677.

[^0]: ${ }^{2}$ Supported by the Sofia University Research Grant No. MM-399/2001.
 E-mail address: geno@fmi.uni-sofia.bg.

