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Abstract

We show that the Christoffel function 4, associated with the Hermite weight function
wi(x) = exp(—x?) is bell-shaped. As a consequence, we describe completely how the weights
in a Gauss-type quadrature formula associated with wy(x) are arranged in magnitude.
© 2003 Elsevier Inc. All rights reserved.
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1. The result

Let duo be a finite positive Borel measure on the real line, such that all its moments
are finite, 1.e.,

,un:/x"doc(x)<oo, n=0,1,2,..., (po>0).
R

Denote by {p,},—, the associated sequence of polynomials orthonormal with respect
to do on R, i.e., polynomials

pi’l(x) Zp,,(doz;x) = Ynxn + IR yn = '))n(dO()>07
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satisfying

b/)pm(XHm(X)da(x)::émn, mn=0,12, ...
R

The Christoffel function associated with do is defined by

-1
Ju(do; x) = [Zpkdax] , n=12...,

or, equivalently, by

Vn 1
Vno1 Py (dot; X)pp_1(do; x) — pu(dos; x)p),_ (do; x)°

For a detailed account on Christoffel functions and their application to various
problems arising in orthogonal polynomials, approximation theory, harmonic and
numerical analysis, we refer the reader to the survey of Nevai [6].

This note is concerned with the behavior of 1,(x) in the case of Hermite weight
function wy (x) = exp(—x?), i.e., da(x) = wy(x) dx. As is well-known (see, e.g., [8]),
in this case the associated orthogonal polynomials are the Hermite polynomials
{H,} given by

Jn(do; x) =

o db e
Hum_(lyzdk&“h k=0,1,...,

and the Christoffel function 4,(x) = A,(wg;x) is
n'/22M(n —1)!
H (x)Hy—1(x) — Hy(x)H,_(x)

(1.1)

In(Wiy x) =

It turns out that the graph of 4,(wg; x) is extremely simple, a fact that seems not to
have been noticed before.

Theorem 1. The Christoffel function A,(wm;x) is bell-shaped.

Proof. All we need is to show that A/ (wy;x) changes its sign only at x = 0. The
proof makes use of the following “individual” properties of the Hermite polynomials
(cf. [8, Chapter 5.5])

Hj(x) = 2kHj_1(x) (1.2)
and
H}(x) = 2xH}(x) — 2kH(x). (1.3)

Clearly, A, (wy;x) =0 if and only if H/(x)H,_1(x) — H,(x)H_,(x) = 0. With the
help of (1.2) and (1.3) we find

H2 H// /
H'Hy o — HyH! | = — Z<_) ,
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1\ H, ' [H, H\'
(i) = (o) =2 o< () |

hence
HZ H/ H/ /
H'H, ,—HH ,=—-—t|"2 L.
" : n n {Hn +x<Hn) }
With x;,<---<Xx,, being the zeros of H, (by symmetry, X,;i_;, = —X;, for
i=1,...,n), we obtain
H (H')’ o1 u x
(i) -3 e
Hn Hn i—1 X — Xin i—1 (X — xi,n)
_ n xiﬁ
i=1 (X - xi‘l’l)z
_ I Xin Xin
2 prll [ESER ) (x + Xin)
n xZ
— _ 2x Ln
2
i:zl (X2 - ng,n)

Hence, we found

2 n ) 2
H;;/(X)anl(x) - Hn(X)HrlLl(x) _ 2an (X) Z( Xin S > 7

2 _
n =1 X xi,n

showing that 4, (wg; x) changes its sign only at x = 0, and x = 0 is a single or triple
zero of A (wp;x) depending on whether n is even or odd number. Theorem 1 is
proved. [

2. Application to quadrature formulae

The Christoffel function Z,(do) is closely related to the weights Ax, =
Aien(dar) (k=1,...,n) of the n-point Gauss-Jacobi quadrature formula

OS1f1 =" dkcaf Xk, (2.1)
k=1
which is determined uniquely by the property that it calculates exactly the integral
1) = 1dssf] = [ f(x)da(x)

whenever f is algebraic polynomial of degree not exceeding 2n — 1, and wherein
{Xkntie) = {xrn(do)}i_, are the zeros of p,(da), X1, <X2,< -+ <X, Namely, the
weights /., in QY are given by

Jien(dor) = Zy(do; xXpcp(dor)), k=1,...,n.
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This is a particular case of a more general property of the Christoffel function
Jn(de), which we recall below.

Definition 2. A quadrature formula
Ql’l[f] = Zak‘nf(tk,n)a [l,n<t2,n< e <lyp (22)
k=1

is said to be a Gauss-type quadrature formula associated with du, if Q,[f] = I[f] for
every polynomial f of degree not exceeding 2n — 2.

As is well-known, a necessary and sufficient condition for (2.2) to be of
Gauss-type is (2.2) to be interpolatory with nodes generated by the zeros of a
polynomial

¥a(0;x) = pu(do; x) — opp-1(do; x), 0€R. (2.3)

For each g e R the zeros {#,(0)};_, of ¥, are real, distinct and {z,(¢)} are strictly
monotone increasing functions. This follows easily from the zero separation
property of orthogonal polynomials. As a consequence of this monotonicity, for
k=1,...,n the kth node of a Gauss-type quadrature formula belongs to
(Xk—1p-1(dat), X y—1(dr)), where xg,_1(do) = —oco and x,,_i(doe) = co. Another
consequence is that the nodes of every two Gauss-type quadrature formulae
interlace.

We shall use the following important property of the Christoffel function (see, e.g.,
[4, Chapter 1]):

Proposition 3. Given an arbitrary &€ R such that p,_(da; €) #0, there exists a unique
Gauss-type quadrature formula (2.2) which has & as a node. The corresponding to &
weight in this quadrature formula is equal to 1,(do; &).

In view of Theorem 1, for the weights in the Gauss-type quadrature
formulae associated with the Hermite weight function wy(x) = exp(—x?)
we have the following comparison rule: the closer the node to the origin,
the larger the corresponding weight. Winston [9] has proved this property
for the weights of the Gauss—Jacobi quadrature formulae associated with wg(x),

using an approach proposed by Sonin [7]. Since Ag,—1 = An—1(Xkn—1) = An(Xkn—1)
fork=1,...,n— 1, we obtain Winston’s result as a consequence of our comparison
rule:

Corollary 4. The weights of the Gaussian quadrature formulae QS and QS | associated
with the Hermite weight function wy(x) = exp(—x?) satisfy

I <Iap-1<lan<Aap-1"" <A(mt1)/2m>

where m =n — 1 if n is even, and m = n if n is odd.
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For nonsymmetric Gauss-type quadrature formulae our comparison rule yields:

Corollary 5. Let (2.2) be a non-symmetric Gauss-type quadrature formula associated
with the Hermite weight function wy(x) = exp(—x2).

(@) If for ake{l,2,....[n/2]} tys1—kn> — tkn, then

Uy <A<\ p<Bp<dp-2,<-"

(b) If for a ke{1,2,...,[n/2]} turi—kn< — tin, then

Aain <an,n <dayp <an71,n <az,<---

Proof. Actually, we prove a slightly stronger result. Consider case (a). Since the
nodes of Q,, and QnG interlace, the inequality ¢, 1k, > — t, shows that the nodes of
Q, are biased to the right with respect to the nodes of QF. We make use of the
symmetrical structure of Q¥ and QY ,, the fact that the nodes of Q, interlace with
the nodes of both QY and Q,(f_l, and the comparison rule to obtain the inequalities

\ N 5
A <Anppn = Aln <a1,n<il,n71 = An—1n-1 <an71.n<)»n71,n7

;Ln—l,n = )v2,n < azn < )v27n—1 = }vn—2,n—l < ap—2n < An—2,n-

Proceeding in the same manner, we find the arrangement of all the weights of Q,.
The proof of part (b) is analogous, and therefore is omitted. [

Many properties of the Christoffel function associated with the ultraspherical
weight function wy(x) = (1 — x2)""12 including various inequalities between the
weights of the related Gauss, Radau and Lobatto quadrature formulae, have been
obtained by Forster [2]. Unlike the situation with Theorem 1, the graph of the
Christoffel function 4,(w,; x) is more complicated, e.g., for —1/2<u<1/2, ,(w,; x)
has exactly 2n — 3 local extrema (see [2]). Nevertheless, it is well-known (cf., e.g., [8,
Chapter 15]) that the weights of the Gauss—Jacobi quadrature formula QS‘ associated
with w,(u>0) increase as their abscisae approach the origin, and have the opposite
behavior when p<0. This fact has been used in [1] in the study of the weight
distribution of spherical z-designs.

For other inequalities and estimates involving the weights in Gauss-type
quadrature formulae associated with the classical weight functions of Jacobi,
Laguerre and Hermite we refer the reader to [3,5,9]. Note that all these papers make
use of the Sonin approach, which is not applicable if the associated orthogonal
polynomials do not satisfy a second-order differential equation. We conjecture that
the bell-shaped form in the Christoffel function persists for more general weight
functions, e.g., for Freud weights of the form w(x) = exp(x™"), m—even positive
integer. However, for m>2 the proof must rely on different kind of arguments.
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